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In addition toC2-symmetrical ligands1 and their nonsymmetrical
congeners,2-4 we have recently introduced a new class of
aminophosphines, e.g., the title compound1 (MAP),5 which can
be regarded as a nitrogen analogue of Hayashi’s2 MOP (2). The
MAP ligands exhibited asymmetric induction in Pd(0)-catalyzed
allylic substitution5 and a dramatic acceleration of the Hartwig-
Buchwald6 amination of aryl halides.3d,7 The latter effect was
simultaneously reported by Buchwald for the (t-Bu)2P counterpart
of 1 and its biphenyl analogues.8 These ligands were assumed to
coordinate Pd via P,N-chelation (3).5,8 Herein, we present evidence
that 1 actually acts as a P,C-ligand with an unusual Cσ-Pd
bonding mode5 (Scheme 1) and demonstrate a substantial
acceleration of Suzuki coupling in its presence.

Single-crystal X-ray crystallography of the Pd/1 complex,
prepared from (PhCN)2PdCl2 and (S)-(+)-1, excluded the P,N-
chelate3 structure and revealed its P,Cσ-ligating alternative (S)-
(+)-5 (Figure 1),9 whose formation apparently reflects the ligand’s
enamine-like character10-13 combined with the known tendency
of Pd to form five-membered palladacycles in preference to other
ring-sizes.14 In solution, an 85:10:5 mixture of three species has
been detected by1H NMR spectroscopy. In the most abundant
complex, the singlet of Me2N was shifted to 3.11 ppm (from 2.23
ppm in1). The signal of C(1) in the13C NMR spectrum appeared
at 72.64 ppm, whereas C(2) was shifted to 173.35 ppm, which is
compatible with the P,C-chelated structure5.15 The less abundant
complex exhibited two doublets for the Me2N at 2.56 and 4.06
ppm (4JH,P ) 5.0 and 4.9 Hz, respectively), which is indicative
of P,N-chelation3. The least populated species was characterized
only by 31P NMR spectroscopy, which demonstrated a P-Pd
coordination, suggesting the P-monocoordinated complex4.
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63, 7727. (e) Singer, R. A.; Buchwald, S. L.Tetrahedron Lett.1999, 40, 1095.
NOBIN application: (f) Carreira, E. M.; Singer, R. A.; Wheeseong, L.J.
Am. Chem. Soc. 1994, 116, 8837. (g) Carreira, E. M.; Wheeseong, L.; Singer,
R. A. J. Am. Chem. Soc. 1995, 117, 3649. (h) Singer, R. A.; Carreira, E. M.
J. Am. Chem. Soc. 1995, 117, 12360. (i) Singer, R. A.; Carreira, E. M.
Tetrahedron Lett.1997, 38, 927.

(4) Phosphinooxazolines: (a) von Matt, P.; Pfaltz, A.Angew. Chem., Int.
Ed. Engl.1993, 32, 566. (b) Sprinz, J.; Helmchen, G.Tetrahedron Lett.1993,
34, 1769. (c) Frost, C. G.; Williams, J. M. J.Tetrahedron Lett.1993, 34,
2015. QUINAP: (d) Claridge, T. D. W.; Long, J. M.; Brown, J. M.; Hibbs,
D.; Hursthouse, M. B.Tetrahedron1997, 53, 4035. (e) Knight, F. I.; Brown,
J. M.; Lazzari, D.; Ricci, A.; Blacker, A. J.Tetrahedron1997, 53, 11411. (f)
Doucet, H.; Brown, J. M.;Tetrahedron: Asymmetry1997, 8, 3775.

(5) Vyskočil, Š.; Smrčina, M.; Hanusˇ, V.; Polášek, M.; Kočovský, P. J.
Org. Chem.1998, 63, 7738.

(6) (a) Wolfe, J. P.; Wagaw, S.; Buchwald, S. L.J. Am. Chem. Soc.1996,
118, 7215. (b) Driver, M. S.; Hartwig, J. F.J. Am. Chem. Soc.1996, 118,
7217. (c) Marcoux, J.-F.; Wagaw, S.; Buchwald, S. L.J. Org. Chem.1997,
62, 1568. (d) Paul, F.; Patt, J.; Hartwig, J. F.Organometallics1995, 14, 3030.
For a review, see: (e) Hartwig, J. F.Angew. Chem., Int. Ed.1998, 37, 2046.
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Crystallographic analysis of theη3-allyl complex, prepared from
(S)-(+)-1 and [(MeCN)2Pd(η3-C3H5)]+ TfO- (Figure 1), again
revealed the unusual P,Cσ-chelated structure (+)-616 that exists
as a∼3:2 mixture of two diastereoisomers resulting from the
positioning of the allyl unit. NMR spectroscopy confirmed the
presence of the two latter species in solution in a∼1.1:1 ratio,
whose interconversion is slower than the NMR time scale at
ambient temperature; C(1) is characterized by signals at 92.9 and
94.3 ppm in the13C NMR spectrum of the mixture, whereas C(2)
appears at 155.4 ppm.17,18

These results seem to be in sharp contrast to Hayashi’s X-ray
structure of (MOP)Pd(prenyl)Cl, where MOP is monocoordinated
to Pd by P.19 However, inspection of this structure revealed that
Pd is, in fact, positioned right above the C(1)-C(2) bond with
Pd-C(1) and Pd-C(2) distances being 3.38 and 3.50 Å,
respectively. Hence, on creation of a vacant coordination site (e.g.,
by loss of Cl-), minimal distortion would permit bonding in a
manner analogous to6. Indeed, we have now found this to be
the case for [(MOP)Pd(η3-C3H5)]+ TfO- (7), in which Pd-C(1)
and Pd-C(2) distances of 2.34 and 2.47 Å were observed by
single crystal X-ray analysis, clearly demonstratingη2-coordina-
tion.20

While 2 proved to have relatively weak effect on the Hartwig-
Buchwald amination,7,21 we have observed a substantial accelera-
tion, e.g., for the reaction of 4-(t-Bu)C6H4Br with n-Bu2NH in
the presence of Pd/1 (3 mol %, 50°C, 12 h)7,22 to produce 4-(t-
Bu)C6H4N(n-Bu)2. Even more dramatic acceleration was attained
for Suzuki coupling:23,24thus, phenylation of 4-Cl-C6H4CHO with

PhB(OH)2 occurred in <20 h at room temperature26 in the
presence of (AcO)2Pd (3 mol %),1 (4.5 mol %), and either CsF8

or Cs2CO3
24 (3 equiv).

The enhanced reactivity of the Pd/MAP complexes may
originate from the presence of the low-abundant P-monocoordi-
nated species (analogous to4), in line with Buchwald’s suggestion
(made without spectroscopic evidence),8 while the P,C-complex
would serve as an inactive depot. On the other hand, the P,C-
chelate (analogous to5) can also be conjectured to play a role,
and the reactivity of Pd/1 could be understood in terms of
accelerated oxidative addition (the rate-limiting step6e) owing to
the electron richness of the “palladate” species. The lack of
accelerating effect of27,21 (which tends to avoid bidentate
coordination in the presence of Cl ligand19) seems to further
support the importance of P,C-coordination of1, at least in some
parts of the catalytic cycle.26 Furthermore, the reaction of (()-
[1-2H]-cyclopent-2-enyl pivalate with NaCH(CO2Me)2 and (S)-
(+)-6 (5 mol %) was found to proceed with 88% regiochemical
retention and nearly identical results were observed with2.27 This
powerful memory effect proved to be attenuated by Cl- (5 mol
%), which can be understood in terms of accelerated collapse of
an ion-paired28 intermediate [η3-(c-C5H7)-PdL]+ [O2C-tBu]- (L
) 1 or 2 in P,C-mode) and chloride-catalyzed diastereoisomer
equilibration.29,30 Kinetic resolution (kR/kS = 4-7)30 and high
catalyst stability29 further support bidentate coordination of MAP
and MOP, since monodentate ligation would be expected to be
less rigid and unlikely to effectively discriminate enantiomers.

In conclusion, we have structurally characterized the unusual
Pd(II) complexes5-7, which proved to be P,C-chelates (both in
the solid state and in solution). Our experiments have demon-
strated that theP,C-ligation must be considered as a potential
binding mode in reactions inVolVing MAP and MOP,even though
some parts of the active cycle may involve other modes of
ligation. Pd/1 complexes can be viewed as the first examples of
chiral analogues of the recently reported P,Cσ-chelates.26
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Figure 1. ORTEP diagrams for5-7; H and TfO- are omitted.
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